Explicit Class Field Theory for Global Function Fields

نویسندگان

  • DAVID ZYWINA
  • David Hayes
چکیده

Let F be a global function field and let F ab be its maximal abelian extension. Following an approach of D. Hayes, we shall construct a continuous homomorphism ρ : Gal(F /F ) → CF , where CF is the idele class group of F . Using class field theory, we shall show that our ρ is an isomorphism of topological groups whose inverse is the Artin map of F . As a consequence of the construction of ρ, we obtain an explicit description of F . Fix a place ∞ of F , and let A be the subring of F consisting of those elements which are regular away from ∞. We construct ρ by combining the Galois action on the torsion points of a suitable Drinfeld A-module with an associated ∞-adic representation studied by J.-K. Yu. In the memory of David Hayes

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Drinfeld Modules

(1) Explicit class field theory for global function fields (just as torsion of Gm gives abelian extensions of Q, and torsion of CM elliptic curves gives abelian extension of imaginary quadratic fields). Here global function field means Fp(T ) or a finite extension. (2) Langlands conjectures for GLn over function fields (Drinfeld modular varieties play the role of Shimura varieties). (3) Modular...

متن کامل

Applications of the Class Field Theory of Global Fields

Class field theory of global fields provides a description of finite abelian extensions of number fields and of function fields of transcendence degree 1 over finite fields. After a brief review of the handling of both function and number fields in Magma, we give a introduction to computational class field theory focusing on applications: We show how to construct tables of small degree extensio...

متن کامل

Adelic Approach to the Zeta Function of Arithmetic Schemes in Dimension Two

This paper suggests a new approach to the study of the fundamental properties of the zeta function of a model of elliptic curve over a global field. This complex valued commutative approach is a two-dimensional extension of the classical adelic analysis of Tate and Iwasawa. We explain how using structures which come naturally from the explicit two-dimensional class field theory and working with...

متن کامل

Globalization and Employment

In this paper we study the compatibility of Cohen-Lenstra heuristics with Leopoldt’s Spiegelungssatz (the reflection theorem). We generalize Dutarte’s ([1983, in “Théorie des nombres, Besançon, 1983-1984”]) work to every prime number p : he proved the compatibility of the Cohen-Lenstra conjectures with the Spiegelungssatz in the case p = 3. We also show that the Spiegelungssatz is compatible wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013